Abstract
AbstractThe future expansion of nuclear power provides materials challenges that are not easily overcome, for example the safe immobilisation of nuclear waste is an important component in any future expansion of nuclear power. The use of ceramic-based materials, as opposed to borosilicate glasses, is now being investigated widely. The ability of ceramics to be tailored to a specific waste stream is now understood and obtainable quickly and with minimal cost. A second component that limits the expansion of fission-based technologies is the development of materials that are not only tolerant of radiation damage, but are also capable of retaining mechanical strength at high temperatures. One concern for any material however, is the effect of radiation damage, primarily from alpha-decay damage, which in many systems can transform the material from crystalline to amorphous. The effects of such radiation damage on both the structural and chemical properties can range from trivial to critical, for example volume expansion and are the primary focus of much research. As part of a long-term research programme the effects on radiation tolerance of a range of ordered and disordered materials are discused.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have