Abstract

In this work, acrylic acid (AAc) monomer was grafted onto low-density polyethylene (LDPE) films by the direct method to obtain acid (LDPE-grafted poly(acrylic acid) (LDPE-g-PAAc)) graft copolymers. The presence of the grafted PAAc with COOH groups allows coupling with Fe2+/3+ ions. The stabilization of Fe3O4 particles onto the graft copolymers was done by in situ reduction of LDPE-g-PAAc/Fe2+/3+ with sodium borohydride (NaBH4) in aqueous solution. The LDPE-g-PAAc graft copolymer and LDPE-g-PAAc/Fe3O4 composite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and electron spin resonance (ESR). The synthesized composites exhibit excellent magnetic properties. The results indicated that the magnetic oxide (Fe3O4) was embedded and homogenously dispersed into the surfaces of the graft copolymer films as indicated by SEM. The FT-IR analysis clearly suggests that an AAc monomer was effectively grafted onto LDPE. The XRD studies elucidate the change in the crystallinity of the graft copolymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call