Abstract

The radiation processing of materials and commercial products with high-energy X-rays, which are also identified by the German term bremsstrahlung, can produce beneficial changes that are similar to those obtained by irradiation with nuclear gamma rays emitted by cobalt-60 sources. Both X-rays and gamma rays are electromagnetic radiations with short wavelengths and high photon energies that can stimulate chemical reactions by creating ions and free radicals in irradiated materials. Nevertheless, there are some physical differences in these energy sources that can influence the choice for practical applications. The English translation of bremsstrahlung is braking radiatiorn or deceleration radiation. It is produced when energetic electrons are deflected by the strong electric field near an atomic nucleus. The efficiency for producing this kind of electromagnetic energy increases with the kinetic energy of the electrons and the atomic number of the target material. The energy spectrum of the emitted X-ray photons is very broad and extends up to the maximum energy of the incident electrons. In contrast, a cobalt-60 nucleus emits two gamma rays simultaneously, which have well-defined energies. Another significant difference is the angular distribution of the radiation. Nuclear gamma rays are emitted in all directions, but high-energy bremsstrahlung photons are concentrated in the direction of the incident electrons when they strike the target material. This property enables an X-ray processing facility to be more compact than a gamma-ray processing facility with similar throughput capacity, and it increases the penetration and the efficiency for absorbing the emitted X-ray energy in the irradiated material. Recent increases in the electron energy and the electron beam power from modern industrial accelerators have increased the throughput rates in X-ray processing facilities, so that this irradiation method is now economically competitive with large cobalt-60 facilities. Several industrial facilities are now equipped to provide radiation processing with X-rays. This paper describes the characteristics of high-energy, high-power X-rays, and some practical applications in curing polymeric materials with this kind of radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call