Abstract

ABSTRACT Cosmic rays (CRs) are thought to play an important role in galaxy evolution. We study their effect when coupled to other important sources of feedback, namely supernovae (SNe) and stellar radiation, by including CR anisotropic diffusion and radiative losses but neglecting CR streaming. Using the ramses-rt code, we perform the first radiation-magnetohydrodynamics simulations of isolated disc galaxies with and without CRs. We study galaxies embedded in dark matter haloes of 1010, 1011, and $10^{12}\, \rm M_{\odot }$ with a maximum resolution of $9 \, \rm pc$. We find that CRs reduce the star formation (SF) rate in our two dwarf galaxies by a factor of 2, with decreasing efficiency with increasing galaxy mass. They increase significantly the outflow mass loading factor in all our galaxies and make the outflows colder. We study the impact of the CR diffusion coefficient, exploring values from κ = 1027 to $\rm 3\times 10^{29}\, cm^2\, s^{-1}$. With a lower κ, CRs remain confined for longer on small scales and are consequently efficient in suppressing SF, whereas a higher diffusion coefficient reduces the effect on SF and increases the generation of cold outflows. Finally, we compare CR feedback to a calibrated ’strong’ SN feedback model known to sufficiently regulate SF in high-redshift cosmological simulations. We find that CR feedback is not sufficiently strong to replace this strong SN feedback. As they tend to smooth out the ISM and fill it with denser gas, CRs also lower the escape fraction of Lyman continuum photons from galaxies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.