Abstract

BackgroundFunctional magnetic resonance imaging may provide several quantitative indices strictly related to distinctive tissue signatures with radiobiological relevance, such as tissue cellular density and vascular perfusion. The role of Intravoxel Incoherent Motion Diffusion Weighted Imaging (IVIM-DWI) and Dynamic Contrast-Enhanced (DCE) MRI in detecting/predicting radiation-induced volumetric changes of parotids both during and shortly after (chemo)radiotherapy of oropharyngeal squamous cell carcinoma (SCC) was explored.MethodsPatients with locally advanced oropharyngeal SCC were accrued within a prospective study offering both IVIM-DWI and DCE-MRI at baseline; IVIM-DWI was repeated at the 10th fraction of treatment. Apparent diffusion coefficient (ADC), tissue diffusion coefficient Dt, perfusion fraction f and perfusion-related diffusion coefficient D* were estimated both at baseline and during RT. Semi-quantitative and quantitative parameters, including the transfer constant Ktrans, were calculated from DCE-MRI. Parotids were contoured on T2-weighted images at baseline, 10th fraction and 8th weeks after treatment end and the percent change of parotid volume between baseline/10th fr (∆Vol10fr) and baseline/8th wk. (∆Volpost) computed.Correlations among volumetric changes and patient-, treatment- and imaging-related features were investigated at univariate analysis (Spearman’s Rho).ResultsEighty parotids (40 patients) were analyzed. Percent changes were 18.2 ± 10.7% and 31.3 ± 15.8% for ∆Vol10fr and ∆Volpost, respectively. Among baseline characteristics, ∆Vol10fr was correlated to body mass index, patient weight as well as the initial parotid volume. A weak correlation was present between parotid shrinkage after the first 2 weeks of treatment and dosimetric variables, while no association was found after radiotherapy. Percent changes of both ADC and Dt at the 10th fraction were also correlated to ∆Vol10fr. Significant relationships were found between ∆Volpost and baseline DCE-MRI parameters.ConclusionsBoth IVIM-DWI and DCE-MRI can help to detect/predict early (during treatment) and shortly after treatment completion the parotid shrinkage. They may contribute to clarify the correlations between volumetric changes of parotid glands and patient−/treatment-related variables by assessing individual microcapillary perfusion and tissue diffusivity.

Highlights

  • Functional magnetic resonance imaging may provide several quantitative indices strictly related to distinctive tissue signatures with radiobiological relevance, such as tissue cellular density and vascular perfusion

  • Functional magnetic resonance imaging (MRI) techniques, such as diffusion- and perfusion- MRI, may have an important role, as they provide several quantitative indices strictly related to distinctive tissue signatures with radiobiological relevance, such as tissue cellular density and vascular perfusion [12, 13]

  • Patient population& treatment To be eligible, patients had to fulfill all the following criteria: (i) age older than 18 years; (ii) Karnofsky performance status > 80; (iii) pathologically confirmed squamous cell carcinoma of the oropharynx; (iv) stage III or IV without distant metastases according to the 7th edition of the AJCC Cancer Staging Manual; (v) treatment with radiotherapy + chemotherapy

Read more

Summary

Introduction

Functional magnetic resonance imaging may provide several quantitative indices strictly related to distinctive tissue signatures with radiobiological relevance, such as tissue cellular density and vascular perfusion. Thought the pathophysiology of parotid shrinkage during radiotherapy remains unclear [9], image-based scoring of toxicity based on early changes of irradiated organs can provide a timely, objective and consistent endpoint for patient counseling and treatment strategy adaptation [5, 10,11,12]. In this regard, functional magnetic resonance imaging (MRI) techniques, such as diffusion- and perfusion- MRI, may have an important role, as they provide several quantitative indices strictly related to distinctive tissue signatures with radiobiological relevance, such as tissue cellular density and vascular perfusion [12, 13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call