Abstract

Radiation therapy (RT) treats approximately half of all cancers and most brain cancers. RT is variably effective at inducing a dormant tumor state i.e. the time between RT and clinical recurrence of tumor growth. Interventions that significantly lengthen tumor dormancy would improve long-term outcomes. Inflammation can promote the escape of experimental tumors from metastatic dormancy in the lung. Previously we showed intracerebral B16F10 melanoma dormancy varied with RT dose; 20.5Gy induced dormancy lasted ~ 2 to 4weeks-sufficient time to study escape from dormancy. Tumors were followed over time using bioluminescence. Surprisingly, some tumors in endotoxin-treated mice exited from dormancy slower; a large fraction of the mice survived more than 1-year. A cohort of mice also experienced an accelerated exit from dormancy and increased mortality indicating there might be variation within the tumor or inflammatory microenvironment that leads to both an early deleterious effect and a longer-term protective effect of inflammation. Some of the melanin containing cells at the site of the original tumor were positive for senescent markers p16, p21 and βGal. Changes in some cytokine/chemokine levels in blood were also detected. Follow-up studies are needed to identify cytokines/chemokines or other mechanisms that promote long-term dormancy after RT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.