Abstract

The radiation-inactivation method is widely used to determine the oligomeric structure of enzymes without need for solubilization or purification. We have used purified ox liver catalase, a tetrameric enzyme in solution, to study energy transfer between associated promoters responsible for oligomer inactivation. However, after freeze-drying the tetramer dissociates into an asymmetric dimer. In the present paper we compare both the radiation-inactivation size (obtained by following the activity decay) and the target size (obtained by measuring the amount of remaining protein by SDS/PAGE) of catalase under various states of aggregation and temperature. At -78 degrees C, only one promoter was fragmented after being hit by a gamma-ray and, as expected, this protomer was also inactivated. This result was obtained when either catalase was in tetrameric or in dimeric forms. However, at 38 degrees C, even though a single monomer was fragmented as at -78 degrees C, the whole dimer was inactivated. This result suggests that, at the higher temperature, there is a transfer of energy from the fragmented protomer to the other associated protomer, causing inactivation of the whole dimer. The inactivation of oligomeric enzymes is a two-step mechanism involving: (1) fragmentation of the hit monomer, followed by (2) temperature-dependent energy transfer from the fragmented towards the associated protomer. Thus we conclude that the radiation-inactivation size reflects the transfer of absorbed energy inside the oligomer which causes inactivation of one or several monomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call