Abstract

In order to understand the organization of the PSI core antenna and to interpret results obtained from studies of the temperature and wavelength dependence of energy transfer and trapping in the PSI particles, we have constructed a model for PSI in which spectral heterogeneity is considered via a self-consistent approach based on Forster transport. The temperature dependence of the absorption and emission spectra of the individual Chl molecules in the protein matrix is calculated based on a model Hamiltonian which includes a phonon contribution. Time and wavelength resolved kinetics of PSI at different temperatures are investigated by means of two-dimensional lattice models. We conclude that wavelength-dependent fluorescence decay kinetics result only when two or more bottlenecks exist in the energy transfer and trapping process. A single trap or several pseudo-traps with spectrally identical environments do not lead to wavelength dependent decays. Simple funnel arrangements of the spectral types can be ruled out. At least one pigment with energy lower than the photochemical trap located close to the reaction center is required to produce the trends of the fluorescence lifetimes observed experimentally. The remainder of the core antenna is consistent with a random arrangement of spectral types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call