Abstract

For space solar cells, thinner is better: indeed reducing the absorber thickness enables mass savings and radiation hardness improvements. However if the solar cells absorber thickness is simply reduced, the end-of-life (EOL) performance advantage of ultra-thin cells compared to bulk counterpart will only happen at very high fluences. By combining thinner absorber with efficient light trapping structures, ultra-thin solar cells can have superior EOL performances (efficiency, W/kg, W/m2) at moderate fluences. Recent advances have shown that ~ 200nm thin GaAs cells with a nanostructured back mirror can reach ~ 20% BOL efficiency. In this study, we review the potential of such ultra-thin GaAs cell technology for space applications. The first experimental results of 1 MeV electron irradiation tests on ultra-thin GaAs solar cells with Ag back mirror will be presented, and the radiation hardness will be compared with bulk GaAs solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.