Abstract
In view of the High Luminosity LHC upgrade, the so-called Phase 2 upgrade, the electronics of the Drift Tubes (DT) subdetector of CMS will undergo a complete innovation. The requirements in terms of trigger rate will exceed the capabilities of the present electronics. Thus, all the on-detector electronics together with the associated back-end need to be replaced. Phase-2 on-detector electronics for DT consist of about 800 FPGAs (Field Programmable Gate Array) based boards called OBDT (On-detector Board for Drift Tubes). These boards are sub-divided in two different categories: 600 OBDT ϕ and 200 OBDT θ, targeting respectively the readout of DT wires parallel and normal to the LHC beams. Each OBDT ϕ is able to time-digitize 240 channels with sub-nanosecond resolution and upstream to the back end using multiple high-speed optical links running at 10.24 Gb/s. The choice of components known to have good resistance to radiation was a requirement in the design of the OBDT. The main component, the FPGA, is a flash-based PolarFire from Microsemi, already qualified in different facilities for radiation hardness tests. As a validation step, a campaign of radiation tests was carried out at the INFN-TIFPA Protontherapy Centre in Trento, Italy, using proton beams. The behavior of an OBDT ϕ board was evaluated during radiation exposure with a total dose much higher than expected to be integrated during 10 years of HL-LHC, which is 0.5 Gy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.