Abstract

Coronary angiography and angioplasty have to date been performed using digital angiography and fluoroscopic systems which incorporate an image intensifier (II). More recently flat-panel (FP) detectors have been introduced which are thought to improve spatial resolution. However, there is limited data on the effect of flat-panel detection on radiation exposure. We sought to determine the impact of flat-panel on cumulative radiation exposure in patients undergoing elective coronary angioplasty at our institution. Patients who underwent elective coronary angioplasty in the six months prior to and following upgrade of our Toshiba catheterisation laboratory from image intensifier to flat-panel were included. Demographic and radiation data were collected prospectively and the same five operators performed interventions during the 12-month period. Radiation data was obtained from the dose-area product meter intrinsic to the fluoroscopy system. One hundred and thirty seven patients underwent elective angioplasty over the 12-month period (68 II, 69 FP). Cumulative radiation exposure was increased in flat-panel cases (99, 129 Gy cm(2) versus 71, 77 Gy cm(2), p=0.001). This increase was independent of patient weight (78+/-15 kg versus 78+/-17 kg, p=NS), screening time (19+/-12 min versus 18+/-13 min, p=NS) and total number of digital acquisitions (1475, 820 versus 1668, 1365, p=NS). The total amount of contrast dye did not differ between flat-panel and image intensifier cases (195+/-76 ml versus 194+/-79 ml, p=NS). Adoption of flat-panel detector technology increases radiation exposure. This may have important safety implications for catheterisation laboratory staff and patients undergoing multiple interventional procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call