Abstract

Radiotherapy is a major treatment modality for intracranial tumors, and while it is effective, it can cause serious normal tissue injury. Such injury can involve tissue destruction but can also manifest as cognitive impairments. The pathogenesis of radiation-induced cognitive injury is not well-understood but may involve forebrain neurogenesis. Neurogenic cells are very sensitive to irradiation and undergo apoptosis after clinically relevant doses. While the overall effect of irradiation on neurogenesis is based partly on the intrinsic radiation sensitivity of neural precursor cells, it also involves changes in the microenvironment in which they exist. This review summarizes what is known about ionizing irradiation and neurogenesis and provides insight into some approaches that may be effective in mitigating this particular adverse effect of radiation treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.