Abstract
After the 2011 Fukushima Dai-ichi Nuclear Power Station (FDNPS) accident, wild populations of animals and plants living in the evacuation zone received additional ionizing radiation of both internal and external radiation doses. Morphological abnormalities of pine and fir trees near the FDNPS were reported. In order to evaluate dose-effect relationships, it is necessary to quantify the radiation doses to trees and plants. In this study, the internal and external dose rates to Japanese cedar and plants collected at three sites in Okuma, approximately 4km southwest of FDNPS were estimated applying the ERICA Assessment Tool. The activity concentrations of 134Cs and 137Cs in soils, cedar trunks, and plants were determined. The total dose rates to cedar ranged from 2.2±1.2 to 6.1±2.2 μGy h-1. These rates were within the derived consideration reference levels (DCRLs) reported by ICRP 108 as 4-40 μGy h-1 for pine trees. The highest estimate for plants was 7.1±2.7 μGy h-1, much smaller than the DCRLs reported for grasses and herbs (40-400 μGy h-1). On average, the internal radiation dose rates to cedars at the two sites accounted for 5% and 29% of the external dose rates, respectively, while the value in another site was only 0.4% for cedar. This was attributed to differences in the crown area between the three sites. The trunk diameter of cedars shows a positive correlation with the ratio of internal to external radiation dose rates. It indicates that the total dose rate to cedars is easily estimated with the soil radiocaesium inventory and trunk diameter. The internal radiation dose rate to the plant varied depending on the plant species. This variation was considerably large in plants due to the presence of two species, including Solidago altissima and Artemisia indica var. maximowiczii.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.