Abstract

Following the Fukushima Daiichi Nuclear Power Plant (FNPP) accident, dose rate for Muridae species in forests of Iitate Village, Fukushima, was estimated as 3.9 mGy/day over the first 30 days. According to the derived consideration reference levels (DCRLs) determined by the International Commission on Radiological Protection (ICRP), this dose level could be affecting reproduction of these rodents. However, information on dose rate for forest rodents after 2012 is limited. Therefore, the dose rate of forest rodents was calculated for large Japanese field mice (Apodemus speciosus) captured in the “difficult-to-return zone” in the Fukushima Prefecture from 2012 to 2016. External dose rate was calculated based on the ambient dose equivalent rate of gamma-radiation at the ground level of the trapping site. Internal dose rate was simulated using the EGS5 program based on cesium (Cs)-137 concentrations in the captured mice. Combining the external and internal doses, the total daily dose rate for the mice within the zone was estimated to be 0.201–0.547 mGy/day. In addition, the ratio of external dose rate to total dose rate was estimated to be 61.2–95.4%. Thus, it is concluded that the present radiation exposure of the field mice distributed in the trapping site did not affect their reproduction. However, it must be noticed that total dose rate exceeding 0.1 mGy/day, which offers very low probability of the occurrence of certain effects according to the DCRLs determined by ICRP, is still present in most of the zone (September 2018, Nuclear Regulation Authority, Japan). Thus, various indexes should be applied to evaluate the exposure effects on the field mice in this zone.

Highlights

  • Probability of the occurrence of certain effects according to the derived consideration reference levels (DCRLs) determined by International Commission on Radiological Protection (ICRP), is still present in most of the zone (September 2018, Nuclear Regulation Authority, Japan)

  • The total amount of radioactive materials released into the environment was estimated by several organizations such as the Nuclear and Industrial Safety Agency (NISA), the Nuclear Safety Commission (NSC) and Tokyo Electric Power Co. (TEPCO) [2–6]

  • The external dose rate was calculated based on the ambient dose equivalent rate at ground level at the trapping sites

Read more

Summary

Introduction

The Great East Japan Earthquake occurred on March 11, 2011, 14:46 JST, with its epicenter at N38.1, E142.9 (130 km ESE off Oshika Peninsula) and a depth of 24 km [1]. As an aftermath of the earthquake, the coastal area of the main island, Honshu, was affected by tsunami, which resulted in loss of power supply at Fukushima Daiichi Nuclear Power Plant (FNPP). Substantial amounts of radioactive materials were released into the surrounding environment. The total amount of radioactive materials released into the environment was estimated by several organizations such as the Nuclear and Industrial Safety Agency (NISA), the Nuclear Safety Commission (NSC) and Tokyo Electric Power Co. Radioactive materials were dissolved in rainwater contaminated soil. During the early phase following the accident, radioactive I was the main contaminant of the ground surface. Radiation from 137Cs could affect biological organisms due to long-term exposure to the contaminated environment

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call