Abstract

A 16-channel front-end readout chip for a radiation detector is designed for portable or wearable healthcare monitoring applications. The proposed chip reads the signal of the radiation detector and converts it into digital serial-out data by using a nonbinary successive approximation register (SAR) analog-to-digital converter (ADC) that has a 1-MS/s sampling rate and 10-b resolution. The minimum-to-maximum differential and integral nonlinearity are measured as -0.32 to 0.33 and -0.43 to 0.37 least significant bits, respectively. The signal-to-noise-and-distortion ratio and effective number of bits are 57.41 dB and 9.24 bits, respectively, for an input frequency of 500 kHz and a sampling rate of 1 MS/s. The SAR ADC has a 38.9-fJ/conversion step figure of merit at the sampling rate of 1 MS/s. The proposed chip can read input signals with peak currents ranging from 20 to 750 μA and convert the analog signal into a 10-bit serial-output digital signal. The input dynamic range is 2-75 pC. The resolution of the peak current is 208.3 nA. The chip, which has an area of 1.444 mm × 10.568 mm, is implemented using CMOS 0.18-μm 1P6M technology, and the power consumption of each channel is 19 mW. This design is suitable for wearable devices, especially biomedical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call