Abstract

The effect of high-energy hydrogen and helium implantation and subsequent annealing on generation of radiation defects and shallow donors in the low-doped oxygen-rich FZ n-type silicon was investigated. Samples were implanted with 7 MeV 4He2+ or 1.8 MeV 1H+ to fluences ranging from 1x109 to 3x1011 cm-2 and 1.4x1010 to 5x1012cm-2, resp., and then isochronally annealed for 30 minutes in the temperature range up to 550°C. Results show that radiation damage produced by helium ions remarkably enhances formation of thermal donors (TDs) when annealing temperature exceeds 375°C, i.e. when the majority of vacancy-related recombination centers anneals out. The excess concentration of TDs is proportional to the helium fluence and peaks at 1.6x1014cm-3 if annealing temperature reaches 475°C. Proton irradiation itself introduces hydrogen donors (HDs) which form a Gaussian peak at the proton end-of-range. Formation and annealing of shallow and deep hydrogen-related levels are strongly influenced by electric field at annealing temperatures below 175°C. If annealing temperature exceeds 350°C, HDs disappear and the excessive shallow doping is caused, as in the case of helium irradiation, by radiation enhanced TDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call