Abstract
The effect of neutron, electron and ion irradiation on electrical characteristics of unipolar 1700V SiC power devices (JBS diodes, JFETs and MESFETs) was investigated. DLTS investigation showed that above mentioned projectiles introduce similar deep acceptor levels (electron traps) in the SiC bandgap which compensate nitrogen shallow donors and cause majority carrier (electron) removal. The key degradation effect occurring in irradiated devices is the increase of the ON-state resistance which is caused by compensation of the low doped n-type epilayer and simultaneous lowering of electron mobility. In the case of SiC power switches (JFET, MOSFET), these effects are accompanied by the shift of the threshold voltage. Radiation defects introduced in SiC power devices is unstable and some defects anneal out already at operation temperatures (below 175°C). However, this does not have significant effect on device characteristics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.