Abstract
While silicon has been a steadfast semiconductor material for the past 50 years, it is now facing competition from other materials, especially for detector design. In that respect, due to its high resistance to radiation damage, silicon carbide is one of the most promising materials. In this work, we discuss the radiation damage studies of a new, large area, p-n junction silicon carbide device developed by the SiCILIA collaboration. We have studied the general performances of several devices, as a function of fluence, irradiated in different experimental conditions with different beams. A standard p-n junction silicon detector was also irradiated for comparison. The new detectors manifest excellent performance in terms of stability of the main parameters, linearity, defect distribution, charge collection efficiency, energy resolution, leakage current, etc. Experimental results evidence a radiation resistance of SiC devices more than two order of magnitude higher than Si devices. The new construction technology applied to silicon carbide material has made it possible to create very robust devices with excellent performance. These devices will soon be available for all those scientific projects where a high resistance to radiation damage is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.