Abstract
AbstractRadiation and postirradiation crosslinking of two unsaturated polyester (UP) resins were monitored, and substantial differences in the reaction course and extents were observed. DSC thermograms of one of the resins showed double peaks and significantly lower residual reaction heats. Extraction revealed that gelation dose of the resin with double peak was twice the gelation dose of the other resin that had single peak in DSC thermograms. Although other components of the polyesters were identical, NMR spectra of the resin with a single peak revealed isophthalic units while in the polyester of the resin having double DSC peaks orthophthalic units were detected. Orthophthalate reduced the compatibility of polyester and styrene and caused the reaction‐induced phase separation, influencing gel structure that was visible in scanning electron microscope micrographs. Previously, the double peaks in crosslinking thermograms of UP resins were usually attributed to initiator effects, but here no initiator was used, and, in the literature, we found that the double peaks are almost exclusively present in the thermograms of UP resins containing orthophthalates, whereas in resins with isophthalates double peaks almost never appear. Crosslinking extents were significantly higher in the resin‐containing isophthalate and in both cases enhanced by postirradiation reaction that is often neglected. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have