Abstract

To address the uncertainties of the radiated susceptibility of multiconductor transmission lines (MTLs), a surrogate model of the MTLs radiated susceptibility is established based on generalized polynomial chaos (gPC), and the gPC is made sparser by combining the adaptive hyperbolic truncation (AHT) scheme and the least angle regression (LAR) method. The uncertainties of the radiated susceptibility of transmission lines are calculated using the adaptive-sparse polynomial chaos (AS-PC) scheme. The parameters related to the incident field, such as elevation angle theta, azimuth angle psi, polarization angle eta, and field amplitude E, are inevitably random. Therefore, these four variables are taken as random input variables, and each of them is subject to different variable distributions. The MTLs model with infinite ground as the reference conductor is adopted, different impedances are used and the AS-PC scheme is combined with transmission line theory to calculate the average, standard deviation and probability distribution of the radiated susceptibility of MTLs. Sobol global sensitivity analysis based on variance decomposition is adopted to calculate the influence of random input variables on the MTLs radiated susceptibility model. The calculation results are compared with the results of the Monte Carlo (MC) method, proving that the proposed method is correct and feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call