Abstract

In this paper, an improved array factor of the concentric uniform circular array (CUCA) antenna is proposed for the orbital angular momentum (OAM) vortex beam optimization design. From the perspective of the radiation pattern’s power conservation principle, a correction factor is introduced to the conventional array factor of CUCA. Then, based on the improved array factor, by adjusting the rings’ radii parameters of the CUCA, we optimize the vortex beam’s sidelobe level through the generic algorithm (GA). Two different CUCA antenna model are calculated as examples to further illustrate the effectiveness of the improved array factor. Subsequently, an electromagnetic simulation model of two rings CUCA antenna is built at C band for generating low sidelobe vortex beam carrying OAM mode. The electromagnetic simulation model of the designed CUCA antenna is also fabricated and measured. The corresponding antenna far-field vortex beam radiation pattern and near-field vortex wave electric field distributions are measured. The simulation results and the measurement results are in good agreement. The proposed designs of antenna and OAM vortex beam regulation are expected to be used for 5G and 6G communications applications

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call