Abstract

This paper deals with a fast and simple computational method of 3D near-field (NF) radiation from 2D planar frequency- and time-dependent data. The established calculation method can be used to predict the electromagnetic (EM) emission from various types of electronic devices. The proposed method is originally applicable to the computation of the EM NF along the arbitrary shaped curvilinear 3D surface of multi-shape objects. The EM computation consists in the application of the planar NF-to-NF transform using plane wave spectrum. The relevance of the established method is verified with three different validation tests of analytical and practical demonstrations. The first validation is based on the analytical NF radiation from set of elementary dipoles excited by a harmonic signal. The second validation test is based on the experimented data from a hybrid active printed circuit boards (PCBs) in the frequency domain. The last validation test is performed with the measured NF data from a microstrip planar circuit in the time-domain. For all the different test cases, the plots of EM NF on arbitrary curvilinear surfaces are presented. Applications with 3D visualization or holographic surface with arbitrary geometry of EM radiation from planar data in both frequency- and time-domains confirm the effectiveness of the proposed method to predict the EM NF emission from complex PCBs. The developed 2D-to-3D computational method is particularly useful for radiated EM compatibility engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.