Abstract

This paper is devoted on the application of the computational method for calculating the transient electromagnetic (EM) near-field (NF) radiated by electronic structures from the frequency-dependent data for the arbitrary wave form perturbations i(t). The method proposed is based on the fast Fourier transform (FFT). The different steps illustrating the principle of the method is described. It is composed of three successive steps: the synchronization of the input excitation spectrum I(f) and the given frequency data H0(f), the convolution of the two inputs data and then, the determination of the time-domain emissions H(t). The feasibility of the method is verified with standard EM 3D simulations. In addition to this method, an extraction technique of the time-dependent z-transversal EM NF component Xz(t) from the frequency-dependent x- and y- longitudinal components Hx(f) and Hy(f) is also presented. This technique is based on the conjugation of the plane wave spectrum (PWS) transform and FFT. The feasibility of the method is verified with a set of dipole radiations. The method introduced in this paper is particularly useful for the investigation of time-domain emissions for EMC applications by considering transient EM interferences (EMIs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.