Abstract

Dilute ultracold quantum gases form an ideal and highly tunable system in which superuidity can be studied. Recently quantum turbulence in Bose-Einstein condensates was reported [PRL 103, 045310 (2009)], opening up a new experimental system that can be used to study quantum turbulence. A novel feature of this system is that vortex cores now have a finite size. This means that the vortices are no longer one dimensional features in the condensate, but that the radial behaviour and excitations might also play an important role in the study of quantum turbulence in Bose-Einstein condensates. In this paper we investigate these radial modes using a simplified variational model for the vortex core. This study results in the frequencies of the radial modes, which can be compared with the frequencies of the thoroughly studied Kelvin modes. From this comparison we find that the lowest (l=0) radial mode has a frequency in the same order of magnitude as the Kelvin modes. However the radial modes still have a larger energy than the Kelvin modes, meaning that the Kelvin modes will still constitute the preferred channel for energy decay in quantum turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call