Abstract

We carry out an experimental study of the equilibrium segregation of ternary granular mixtures in a rotating cylinder. In all the experiments, 50% of the volume of the cylinder is filled with the granular mixture and the rotational speed used ensures operation in the rolling regime of flow. Mixtures of spherical particles differing only in size and of spherical particles differing in size and density are considered, using steel balls and glass beads of different sizes. Volume fractions of the components (\({\phi}\)) are measured by sampling at different radial positions (r) to yield the radial volume fraction profiles (\({\phi(r)}\)). Results for mixtures differing only in size of the components indicate that the segregation process is nearly independent of the sizes of the large and middle size particles for the same size of small particles. In the case of mixtures with different size and density components, the segregation patterns depend on the direction of the resultant driving force. In many of the mixtures considered, the pattern of segregation can be qualitatively predicted by considering binary interactions between the components. However, in some mixtures, ternary interactions are found to determine the pattern obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call