Abstract
We investigated the radial variation of sap flow within sapwood below the live crown in relation to tree size in 10-, 32-, 54- and 91-year-old maritime pine stands (Pinus pinaster Ait.). Radial variations were determined with two thermal dissipation sensors; one measured sap flux in the outer 20 mm of the xylem (Jref), whereas the other was moved radially across the sapwood in 20-mm increments to measure sap flux at multiple depths (Jref). For all tree sizes, sap flow ratios (Ri = JiJref (-1)) declined with increasing sapwood depth, but the decrease was steeper in trees with large diameters. Correction factors (C) were calculated to extrapolate Jref for an estimate of whole-tree sap flux. A negative linear relationship was established between stem diameter and C, the latter ranging from 0.6 to 1.0. We found that neglecting these radial corrections in 10-, 32-, 54- and 91-year-old trees would lead to overestimation of stand transpiration by 4, 14, 26 and 47%, respectively. Therefore, it is necessary to account for the differential radial profiles of sap flow in relation to tree size when comparing tree transpiration and hydraulic properties among trees differing in size.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have