Abstract

In this paper, we introduce new sets of 2D and 3D rotation, scaling and translation invariants based on orthogonal radial Racah moments. We also provide theoretical mathematics to derive them. Thus, this work proposes in the first case a new 2D radial Racah moments based on polar representation of an object by one-dimensional orthogonal discrete Racah polynomials on non-uniform lattice, and a circular function. In the second case, we present new 3D radial Racah moments using a spherical representation of volumetric image by one-dimensional orthogonal discrete Racah polynomials and a spherical function. Further 2D and 3D invariants are extracted from the proposed 2D and 3D radial Racah moments respectively will appear in the third case. To validate the proposed approach, we have resolved three problems. The 2D/ 3D image reconstruction, the invariance of 2D/3D rotation, scaling and translation, and the pattern recognition. The result of experiments show that the Racah moments have done better than the Krawtchouk moments, with and without noise. Simultaneously, the mentioned reconstruction converges rapidly to the original image using 2D and 3D radial Racah moments, and the test 2D/3D images are clearly recognized from a set of images that are available in COIL-20 database for 2D image, and PSB database for 3D image.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.