Abstract

The property of rotation, scaling and translation invariant has a great important in 3D image classification and recognition. Tchebichef moments as a classical orthogonal moment have been widely used in image analysis and recognition. Since Tchebichef moments are represented in Cartesian coordinate, the rotation invariance can’t easy to realize. In this paper, we propose a new set of 3D rotation scaling and translation invariance of radial Tchebichef moments. We also present a theoretical mathematics to derive them. Hence, this paper we present a new 3D radial Tchebichef moments using a spherical representation of volumetric image by a one-dimensional orthogonal discrete Tchebichef polynomials and a spherical function. They have better image reconstruction performance, lower information redundancy and higher noise robustness than the existing radial orthogonal moments. At last, a mathematical framework for obtaining the rotation, scaling and translation invariants of these two types of Tchebichef moments is provided. Theoretical and experimental results show the superiority of the proposed methods in terms of image reconstruction capability and invariant recognition accuracy under both noisy and noise-free conditions. The result of experiments prove that the Tchebichef moments have done better than the Krawtchouk moments with and without noise. Simultaneously, the reconstructed 3D image converges quickly to the original image using 3D radial Tchebichef moments and the test images are clearly recognized from a set of images that are available in a PSB database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.