Abstract

Abstract The effects of gas and liquid velocities, liquid viscosity and particle size on the radial dispersion coefficient of liquid phase (Dr) and the bubble properties in three-phase fluidized beds have been determined. A new flow regime map based on the drift flux theory in three-phase fluidized beds has been proposed. In three-phase fluidized beds, D, increases with increasing gas velocity in the bubble coalescing and in the slug flow regimes, but it decreases in the bubble disintegrating regime. The coefficient exhibits a maximum value in the bed of small particles with increasing liquid velocity at lower gas velocities. However, it increases with increasing liquid velocity at higher gas velocities. In two and three-phase fluidized beds of larger particles (6,8 mm), Dr exhibits a maximum value with an increase in liquid viscosity at lower gas velocities, but it increases at higher gas velocities. The mean bubble chord length and its rising velocity increase with increasing gas velocity and liquid viscosity. However, the bubble chord length decreases with an increase in liquid velocity and it exhibits a maximum value with increasing particle size in the bed. The radial dispersion coefficients in the bubble coalescing and disintegrating regimes of three-phase fluidized beds in terms of the Peclet number in the present and previous studies have been well represented by the correlations based on the concept of isotropic turbulence theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.