Abstract
This paper describes the solution of a steady‐state natural convection problem in porous media by the radial basis function collocation method (RBFCM). This mesh‐free (polygon‐free) numerical method is for a coupled set of mass, momentum, and energy equations in two dimensions structured by the Hardy's multiquadrics with different shape parameter and different order of polynomial augmentation. The solution is formulated in primitive variables and involves iterative treatment of coupled pressure, velocity, pressure correction, velocity correction, and energy equations. Numerical examples include convergence studies with different collocation point density and arrangements for a two‐dimensional differentially heated rectangular cavity problem at filtration Rayleigh numbers Ra*=25, 50 and 100, and aspect ratios A=1/2, 1, and 2. The solution is assessed by comparison with reference results of the fine‐mesh finite volume method in terms of mid‐plane velocity components, mid‐plane and insulated surface temperatures, streamfunction minimum, and Nusselt number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.