Abstract
In the study, a method is proposed and developed for solid analysis that is a hybrid of the radial basis function and the finite element method (RBF-FEM). Based on the finite nodes, the method employs the radial basis functions to produce the shape functions with simplicity, especially when increasing the element node number. The formulation and applications of the method in the analysis of solids are examined. Several numerical examples are carried out to analyze the convergence, accuracy, and computational time cost. Its comeouts are then compared with that by the finite element method. The study also shows the factors that affect the accuracy of the method, such as the radial basis function types, radial basis function shape parameter, node number, and node position in an element. It is shown that the method quickly produces better results with large-node-number elements (seven and eight nodes) in comparison to the conventional numerical method. Discussion on the method and the extensibility of the approach are addressed in the conclusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.