Abstract

We describe numerical methods for the construction of interpolatory quadrature rules of Radau and Lobatto types. In particular, we are interested in deriving efficient algorithms for computing optimal averaged Gauss–Radau and Gauss–Lobatto type javascript:undefined;quadrature rules. These averaged rules allow us to estimate the quadrature error in Gauss–Radau and Gauss–Lobatto quadrature rules. This is important since the latter rules have higher algebraic degree of exactness than the corresponding Gauss rules, and this makes it possible to construct averaged quadrature rules of higher algebraic degree of exactness than the corresponding “standard” averaged Gauss rules available in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.