Abstract
A potential strategy for wide area airborne mine/minefield detection is to identify localized areas of soil that have been disturbed due to mine emplacement amidst the undisturbed soil. Disturbed and undisturbed soils are rough in varying degrees and this roughness affects the backscattering behavior at the microwave frequencies. We investigated the feasibility of using high-frequency radar (8-18 GHz) backscatter measurements to detect the residual surface disturbances caused by recent mine emplacement. Radar backscatter measurements from recently buried landmines were obtained at a government minefield data collection site. Case studies of radar backscatter from landmines buried in dirt and gravel for varying incident angles are presented. These results demonstrate that the surface roughness contrast between disturbed and undisturbed soils can be exploited to assist in mine detection operations. The maximum radar backscatter contrast between the disturbed and undisturbed soils was observed at normal incidence. The minimum contrast (radar backscatter crossover angle) occurred between 15 and 30 degree incident angles. These experimental results are shown to be consistent with rough surface scattering assumptions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have