Abstract
PurposeThis paper aims to propose a method for accurate radar echo simulation of wind turbines (WTs) array. It can solve the problem of passive interference from wind farms to neighboring radar stations.Design/methodology/approachFirst of all, the equivalent model of scattering centers of a single WT is obtained by using the spatial spectrum estimation method, and the accuracy of this model is verified by the scaled model experiment; then scattering centers model of WTs array was established by using the spatial coordinate transformation method. According to the position relationship between the model and the radar, and combined with the multipath scattering theory, the radar echo equation of WTs array was deduced. Finally, the simulation analysis is carried out with the four GoldWind 77/1500 WTs as an example and compared with the traditional methods.FindingsThis paper verifies the accuracy of the equivalent model of scattering centers through the WT scaled model experiment, and through simulation analysis, it is found that the result of this method is more consistent with the multipath scattering of radar echo between WTs array in practical engineering than the traditional method.Originality/valueBased on the theory of high-frequency scattering, this paper introduces scattering centers into the solution of radar echo and considers the multipath scattering of radar echo, then a method for solving the radar echo of WTs array based on scattering centers is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.