Abstract
PurposeThe paper aims to capture the rack-level thermal dynamics in data center. It proposes the rack-level response experiments as well as transient Computational Fluid Dynamics (CFD) analysis to characterize the local thermal environment of the system.Design/methodology/approachA single sever simulator rack and its two neighboring racks with its cold and hot aisle containment have been modeled with known cold air supply temperature and flow rate for transient CFD analysis. The heat load was kept constant initially and varied case-to-case basis, which includes capturing the rack-level response with respect to changes in input. However, the response experiments on simulator rack were performed for 14 h by variation of server heat loads as step and ramp input.FindingsThe paper provides the detailed transient CFD analysis of data center racks. The local cold air flow rates and temperature at the vicinity of the racks showed significant effect due to changes in input. It was concluded that the rack-level dynamics impacts the thermal environment of data center and hence cannot be ignored.Research limitations/implicationsThe high computing devices and faster internet demands have led to major thermal management concerns for data center operators. To tackle this issue, capturing the system thermal dynamics is imperative. However, the system-level CFD analysis is computationally expensive. Therefore, this paper deals with the rack-level transient CFD study using commercial tool STAR CCM+.Practical implicationsThis paper includes the modeling of the servers as a porous media as well as the multigrid method to enhance the computational speed. The successful implementation of this approach validated through experiments. This would help to establish a base for research in any type of data center.Originality/valueThis paper provides the porous media approach to model servers and multigrid method to enhance the computational speed. At the same time, the thought of characterizing the local dynamics at the vicinity of data center racks is unique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.