Abstract

This cross-sectional study compared optical coherence tomography angiography (OCTA) parameters between older Black and White adults with systemic comorbidities in an effort to further understand racial differences in the retinal microvasculature. We analyzed vessel density at the superficial (SCP), intermediate (ICP), and deep capillary plexuses (DCP), foveal avascular zone (FAZ) parameters, and blood flow area (BFA) at the choriocapillaris. We used a mixed-effects linear regression model, controlling for hypertension and two eyes from the same subject, to compare OCTA parameters. Black subjects had lower foveal vessel density at the SCP and ICP, while no differences were observed at the parafovea or 3x3 mm macular area of any capillary layer. Black subjects had greater FAZ area, perimeter, and FD-300, a measurement of vessel density in a 300 μm wide ring around the FAZ. Black subjects also had lower BFA at the choriocapillaris. Within a cohort of subjects without hypertension, these differences remained statistically significant, with the exception of foveal vessel density at the SCP and foveal BFA of the choriocapillaris. These findings suggest that normative databases of OCTA parameters must strive to be diverse in nature to adequately capture differences across patient populations. Further study is required to understand if baseline differences in OCTA parameters contribute to epidemiological disparities in ocular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.