Abstract

Among health care researchers, there is increasing debate over how best to assess and ensure the fairness of algorithms used for clinical decision support and population health, particularly concerning potential racial bias. Here we first distill concerns over the fairness of health care algorithms into four broad categories: (a) the explicit inclusion (or, conversely, the exclusion) of race and ethnicity in algorithms, (b) unequal algorithm decision rates across groups, (c) unequal error rates across groups, and (d) potential bias in the target variable used in prediction. With this taxonomy, we critically examine seven prominent and controversial health care algorithms. We show that popular approaches that aim to improve the fairness of health care algorithms can in fact worsen outcomes for individuals across all racial and ethnic groups. We conclude by offering an alternative, consequentialist framework for algorithm design that mitigates these harms by instead foregrounding outcomes and clarifying trade-offs in the pursuit of equitable decision-making.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.