Abstract
Following virus infection of the central nervous system, microglia, the ontogenetic and functional equivalents of macrophages in somatic tissues, act as sources of chemokines, thereby recruiting peripheral leukocytes into the brain parenchyma. In the present study, we have systemically examined the growth characteristics of rabies virus (RV) in microglia and the activation of cellular signaling pathways leading to chemokine expression upon RV infection. In RV-inoculated microglia, the synthesis of the viral genome and the production of virus progenies were significantly impaired, while the expression of viral proteins was observed. Transcriptional analyses of the expression profiles of chemokine genes revealed that RV infection, but not exposure to inactivated virions, strongly induces the expression of CXC chemokine ligand 10 (CXCL10) and CC chemokine ligand 5 (CCL5) in microglia. RV infection triggered the activation of signaling pathways mediated by mitogen-activated protein kinases, including p38, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase, and nuclear factor kappaB (NF-kappaB). RV-induced expression of CXCL10 and CCL5 was achieved by the activation of p38 and NF-kappaB pathways. In contrast, the activation of ERK1/2 was found to down-regulate CCL5 expression in RV-infected microglia, despite the fact that it was involved in partial induction of CXCL10 expression. Furthermore, NF-kappaB signaling upon RV infection was augmented via a p38-mediated mechanism. Taken together, these results indicate that the strong induction of CXCL10 and CCL5 expression in microglia is precisely regulated by the activation of multiple signaling pathways through the recognition of RV infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.