Abstract

The resonant interaction of laser light with atoms is analyzed from the time-dependent density functional theory perspective using a model helium atom which can be solved exactly. It is found that in the exact exchange approximation the time-dependent dipole shows Rabi-type oscillations of its amplitude. However, the time-dependent density itself is not well described. These seemingly contradictory findings are analyzed. The Rabi-type oscillations are found to be essentially of classical origin. The incompatibility of time-dependent density functional theory with few-level approximations for the description of resonant dynamics is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.