Abstract
In this study, we prepared a tri-copolymer porous matrices by natural polymer, collagen (Col), Chitosan (Chi) and Chondroitin (CS). Rabbit articular chondrocytes were isolated from the shoulder articular joints of a rabbit, seeded in Col-Chi-CS scaffold, and implanted subcutaneously in the dorsum of athymic nude mice to tissue engineer articular cartilage in vivo. In vitro studies show that Chondrocytes adhered to the scaffold, where they proliferated and secreted extracellular matrices with time, filling the space within the scaffold. The results of hematoxylin and eosin staining scanning electron microscopy revealed that most of the chondrocytes maintained their typically rounded morphology. After 28 days of culture within Col-Chi-CS scaffold in vitro, the results of histological staining showed forming of cartilage-specific morphological appearance and structural characteristics such as lacunae. Subcutaneous implantation studies in nude mice demonstrated that a homogeneous cartilaginous tissue, which was similar to those of natural cartilage, formed when chondrocytes were seeded in Col-Chi-CS matrix after implant 12 weeks. The tri-copolymer matrix could therefore have potential applications as a three-dimensional scaffold for cartilage tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Artificial Cells, Blood Substitutes, and Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.