Abstract

Rab35 is a small GTPase that regulates plasma membrane to early endosome vesicular trafficking and mediates actin remodeling to form actin-rich cellular structures. While the function of Rab35 in the cellular context has been examined, its role during development has not been well studied. In this study, we take advantage of the sea urchin's high fecundity, external fertilization, and transparent embryos to determine the function of Rab35 during development. We found that loss of function of Rab35 results in defects in skeletogenesis and gastrulation, which were rescued by co-injection of sea urchin Rab35. The loss of Rab35's function results in decreased endocytosis and impaired exocytosis, which may be important for skeletogenesis and gastrulation. Skeletal spicules of Rab35 knockdown embryos have reduced organized actin compared to the control, supporting the notion that Rab35 regulates actin dynamics. In addition, the skeletal and gastrulation defects induced by Rab35 knockdown were rescued by co-injection with Fascin, an actin-bundling protein, indicating that proper actin dynamics play a critical role for both skeletogenesis and gastrulation. Overall, results indicate that through its role in mediating vesicular trafficking and actin remodeling, Rab35 is an important regulator of embryonic structure formation in early development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.