Abstract

The output and time-course of insulin release from pancreatic beta-cells are elegantly controlled. The secretory process comprises pre-exocytotic stages, exocytosis and post-exocytotic stages. The small GTPase Rab27a is known to regulate pre-exocytotic stages that determine the size of the readily-releasable pool of insulin granules. GTP-Rab27a and its specific effectors are responsible for this process like other GTPases. Recently, we searched for Rab27a-interacting proteins and identified coronin 3. Unexpectedly, coronin 3 only bound GDP-Rab27a and this interaction regulated post-exocytotic stages via reorganization of the actin cytoskeleton. Since glucose converts Rab27a from the GTP- to GDP-bound form, we suggested that Rab27a plays a crucial role in stimulus-endocytosis coupling in pancreatic beta-cells, and that this is the key molecule for membrane recycling of insulin granules. In this review, we provide an overview of the roles of Rab27a and its GTP- and GDP-dependent effectors in the insulin secretory pathway of pancreatic beta-cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.