Abstract

RalA is a small GTPase that is thought to facilitate exocytosis through its direct interaction with the mammalian exocyst complex. In this study, we report an essential role for RalA in regulated insulin secretion from pancreatic beta cells. We employed lentiviral-mediated delivery of RalA short hairpin RNAs to deplete endogenous RalA protein in mouse pancreatic islets and INS-1 beta cells. Perifusion of mouse islets depleted of RalA protein exhibited inhibition of both first and second phases of glucose-stimulated insulin secretion. Consistently, INS-1 cells depleted of RalA caused a severe inhibition of depolarization-induced insulin exocytosis determined by membrane capacitance, including a reduction in the size of the ready-releasable pool of insulin granules and a reduction in the subsequent mobilization and exocytosis of the reserve pool of granules. Collectively, these data suggest that RalA is a critical component in biphasic insulin release from pancreatic beta cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.