Abstract
The goal of average reward reinforcement learning is to maximize the long-term average rewards of a generic system. This coincides with the design objective of the control performance standards (CPS) which were established to improve the long-term performance of an automatic generation controller (AGC) used for real-time control of interconnected power systems. In this paper, a novel R(λ) imitation learning (R(λ)IL) method based on the average reward optimality criterion is presented to develop an optimal AGC under the CPS. This R(λ)IL-based AGC can operate online in real-time with high CPS compliances and fast convergence rate in the imitation pre-learning process. Its capability to learn the control behaviors of the existing AGC by observing system variations enable it to overcome the serious defect in the applicability of conventional RL controllers, in which an accurate power system model is required for the offline pre-learning process, and significantly enhance the learning efficiency and control performance for power generation control in various power system operation scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.