Abstract

Crack growth resistance can be substantially affected by the constraint conditions of a structural member which in turn are mainly a function of geometrical variables and the degree of plasticity. Standardized test methods are restricted to high constraint conditions as represented by deeply cracked bend‐type specimens and may hence lead to conservative structural assessments. It is demonstrated that adjusted testing can be used to reduce the degree of conservatism. Due to rapidly increasing computer capabilities, a combination of conventional R‐curve testing with micromechanical models emerges as an accurate tool which may permit routine evaluations of practical situations in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.