Abstract
Carbon nanotubes (CNTs) enable large electric field enhancement for an extremely broad bandwidth spanning from the optical domain down to static fields. This is due to their high aspect ratio, small tip radius, and high structural stability. CNTs therefore represent an ideal model-system for the investigation of nonlinear and strong-field phenomena. In this paper, we extend the range of optical-field-emission materials from metal nanostructures to CNTs. Quiver-quenched optical-field-emission (i.e., the transition to a sub-cycle regime) is observed for CNTs tips in a short-wavelength laser field of 820 nm that requires a mid-infrared excitation field of conventional metal tips emitters. This special property relies on the ultrasmall tips radius (∼1 nm) and the high optical-field enhancement (∼21.6) properties of CNTs. This study suggests that CNTs are excellent candidates for optically driven ultrafast electron sources with both high spatial and high temporal coherence. They also provide more freedom for the manipulation and control of electron dynamics at the attosecond timescale, which extends the bandwidth of light-wave electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.