Abstract

Many quinone-reactive enzyme complexes that are part of membrane-integral eukaryotic or prokaryotic respiratory electron transport chains contain one or more haem b molecules embedded in the membrane. In recent years, various novel proteins have emerged that are devoid of haem b but are thought to fulfil a similar function in bacterial anaerobic respiratory systems. These proteins are encoded by genes organized in various genomic arrangements and are thought to form widespread membrane-bound quinone-reactive electron transport modules that exchange electrons with redox partner proteins located at the outer side of the cytoplasmic membrane. Prototypic representatives are the multihaem c-type cytochromes NapC, NrfH and TorC (NapC/NrfH family), the putative iron-sulfur protein NapH and representatives of the NrfD/PsrC family. Members of these protein families vary in the number of their predicted transmembrane segments and, consequently, diverse quinone-binding sites are expected. Only a few of these enzymes have been isolated and characterized biochemically and high-resolution structures are limited. This mini-review briefly summarizes predicted and experimentally demonstrated properties of the proteins in question and discusses their role in electron transport and bioenergetics of anaerobic respiration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call