Abstract

The major energy-producing reactions of biochemistry occur at biological membranes. Computational protein design now provides the opportunity to elucidate the underlying principles of these processes and to construct bioenergetic pathways on our own terms. Here, we review recent achievements in this endeavour of 'synthetic bioenergetics', with a particular focus on new enabling tools that facilitate the computational design of biocompatible de novo integral membrane proteins. We use recent examples to showcase some of the key computational approaches in current use and highlight that the overall philosophy of 'surface-swapping' - the replacement of solvent-facing residues with amino acids bearing lipid-soluble hydrophobic sidechains - is a promising avenue in membrane protein design. We conclude by highlighting outstanding design challenges and the emerging role of AI in sequence design and structure ideation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.