Abstract

Soil antibiotic pollution profoundly influences plant growth and photosynthetic performance, yet the main disturbed processes and the underlying mechanisms remain elusive. This study explored the photosynthetic toxicity of quinolone antibiotics across three generations on rice plants and clarified the mechanisms through experimental and computational studies. Marked variations across antibiotic generations were noted in their impact on rice photosynthesis with the level of inhibition intensifying from the second to the fourth generation. Omics analyses consistently targeted the light reaction phase of photosynthesis as the primary process impacted, emphasizing the particular vulnerability of photosystem II (PS II) to the antibiotic stress, as manifested by significant interruptions in the photon-mediated electron transport and O2 production. PS II center D2 protein (psbD) was identified as the primary target of the tested antibiotics, with the fourth-generation quinolones displaying the highest binding affinity to psbD. A predictive machine learning method was constructed to pinpoint antibiotic substructures that conferred enhanced affinity. As antibiotic generations evolve, the positive contribution of the carbonyl and carboxyl groups on the 4-quinolone core ring in the affinity interaction gradually intensified. This research illuminates the photosynthetic toxicities of antibiotics across generations, offering insights for the risk assessment of antibiotics and highlighting their potential threats to carbon fixation of agroecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.