Abstract

AbstractNovel quinoidal bisthienoisatin (QBTI) derivatives end‐capped with phenyl and thienyl groups were designed and synthesized. Single‐crystal X‐ray structure analysis of phenyl group flanked QBTI molecule confirmed that the quinoidal structure contributed to the high planarity of the molecular skeleton and the construction of one‐dimensional stacks. The quinoidal form of bisthienoisatin derivatives displayed ambipolar carrier transport properties with mobilities of approximately 10−4 cm2 V−1 s−1. Different flanking aromatic rings considerably affected the thin‐film microstructure and hence the charge carrier transport properties of the material. The QBTI‐based narrow energy gap polymers were theoretically designed and synthesized. Delocalized quinoidal resonance of QBTI unit along the polymer backbone is of particular importance to achieve relatively high conductive state (10−3 S cm−1). We demonstrate that QBTI cores should be promising building blocks for constructing narrow energy gap semiconducting and conductive polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call